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Theorem (Carlson-Thévenaz, W., in progress)
Let ω denote a cube root of unity.

Pic(StMod(kQ8)) ∼=
{

Z/4 if ω /∈ k
Z/4⊕ Z/2 if ω ∈ k

Theorem (Carlson-Thévenaz, W., in progress)
Let n ≥ 4.

Pic(StMod(kQ2n )) ∼= Z/4⊕ Z/2
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Theorem (Carlson-Thévenaz, W.)

Pic(StMod(F2Q8)) ∼= Z/4

Theorem (Carlson-Thévenaz, W.)
Let n ≥ 4.

Pic(StMod(F2Q2n )) ∼= Z/4⊕ Z/2
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Definition
The Picard group of a symmetric monoidal category (C,⊗, 1),
denoted Pic(C), is the set of isomorphism classes of invertible
objects X , with

[X ] · [Y ] = [X ⊗ Y ]

[X ]−1 = [HomC(X , 1)]

Example (Hopkins-Mahowald-Sadofsky)
For (Sp,∧, S,Σ) the stable symmetric monoidal category of
spectra,

Pic(Sp) ∼= Z
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Given a symmetric monoidal ∞-category C, one can do better than
the Picard group:

Definition
The Picard space P ic(C) is the ∞-groupoid of invertible objects
in C and isomorphisms between them.

This is a group-like E∞-space, and so we equivalently obtain the
connective Picard spectrum pic(C).

Proposition (Mathew-Stojanoska)
The functor pic : Cat⊗ → Sp≥0 commutes with limits and filtered
colimits.
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Example
Let R be an E∞-ring spectrum. Then Mod(R) is a stable
symmetric monoidal ∞-category.
The homotopy groups of pic(R) := pic(Mod(R)) are given by:

π∗(pic(R)) ∼=


Pic(R) ∗ = 0
(π0(R))× ∗ = 1
π∗−1(gl1(R)) ∼= π∗−1(R) ∗ ≥ 2

Note that the isomorphism π∗(gl1(R)) ∼= π∗(R) for ∗ ≥ 1 is usually
not compatible with the ring structure.

Richard Wong University of Texas at Austin
Picard Groups of the Stable Module Category for Quaternion Groups



Picard Groups The Stable Module Category Galois Descent Descent for StMod(kQ)

Galois Descent
Theorem (Mathew-Stojanoska)
If f : R → S is a faithful G-Galois extension of E∞ ring spectra,
then we have an equivalence of ∞-categories

Mod(R) ∼= Mod(S)hG

Corollary
We have the homotopy fixed point spectral sequence, which
takes in input the spectrum pic(S) and has E2 page:

Hs(G ;πt(pic(S))⇒ πt−s(pic(S)hG)

whose abutment for t = s is Pic(R).
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I study the modular representation theory of finite groups G
over a field k of characteristic p, such that p | |G |.

Definition
The group of endo-trivial modules is the group

T (G) := {M ∈ Mod(kG) | Endk(M) ∼= k ⊕ P}

where k is the trivial kG-module, and P is a projective kG-module.

We can understand this group as the Picard group of the stable
module category StMod(kG):

T (G) ∼= Pic(StMod(kG))
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Definition
The stable module category StMod(kG) has objects
kG-modules, and has morphisms

HomkG(M,N) = HomkG(M,N)/PHomkG(M,N)

where PHomkG(M,N) is the linear subspace of maps that factor
through a projective module.

Proposition
StMod(kG) is a stable symmetric monoidal ∞-category.
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From now on, we restrict our attention to the case that G is a
finite p-group, so that the following theorem holds:

Theorem (Mathew, Schwede-Shipley)
There is an equivalence of symmetric monoidal ∞-categories

StMod(kG) ' Mod(ktG)

Where ktG is an E∞ ring spectrum called the G-Tate construction.

We will use descent methods to compute

Pic(StMod(kG)) ∼= Pic(ktG)
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Let the spectrum khG ' F (BG+, k) denote the G-homotopy fixed
points of k with the trivial action.

Proposition
There is an isomorphism of graded rings

π−∗(khG) ∼= H∗(G ; k)

There is also khG = BG+ ∧ k, the G-homotopy orbits with the
trivial action.
Proposition
There is an isomorphism

π∗(khG) ∼= H∗(G ; k)
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Just like there is a norm map in group cohomology

NG : H∗(G ; k)→ H∗(G ; k)

there is a norm map NG : khG → khG .
And just as one can stitch together group homology and
cohomology via the norm map to form Tate cohomology,

Ĥ i (G ; k) ∼=


H i (G ; k) i ≥ 1
coker(NG) i = 0
ker(NG) i = −1
H−i−1(G ; k) i ≤ −2

Definition
The G-Tate construction is the cofiber of the norm map:

khG
NG−−→ khG → ktG
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Theorem
We have the Tate spectral sequence, which takes in input a
spectrum R with a G-action, and computes π∗(RtG):

E s,t
2 (R) = Ĥs(G ;πt(R))⇒ πt−s(RtG)

Proposition
For G with the trivial action, there is an isomorphism

π−∗(ktG) ∼= Ĥ∗(G ; k)
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Theorem (Mathew, Schwede-Shipley)
There is an equivalence of symmetric monoidal ∞-categories

StMod(kQ) ' Mod(ktQ)

Where ktQ is an E∞ ring spectrum called the Q-Tate construction.

Theorem (Mathew-Stojanoska)
If R → S is a faithful G-Galois extension of E∞ ring spectra, then
we have the HFPSS:

Hs(G ;πt(pic(S))⇒ πt−s(pic(S)hG)

whose abutment for t = s is Pic(R).
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Definition
A map f : R → S of E∞-ring spectra is a G-Galois extension if
the maps

(i) i : R → ShG

(ii) h : S ⊗R S → F (G+, S)
are weak equivalences.

Definition
A G-Galois extension of E∞-ring spectra f : R → S is said to be
faithful if the following property holds:
If M is an R-module such that S ⊗R M is contractible, then M is
contractible.
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Proposition (Rognes)
A G-Galois extension of E∞-ring spectra f : R → S is faithful if
and only if the Tate construction StG is contractible.

Theorem (W.)
For Q a quaternion group with center H ∼= Z/2,

khQ → khZ/2 and ktQ → ktZ/2

are faithful Q/H-Galois extensions of ring spectra.
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E s,t
2 = Hs(Q/H;πt(ktZ/2))⇒ πt−s(ktQ)

−2 0 2 4 6

0

1

2

3

The Adams-graded HFPSS. ◦ = k. Not all differentials are drawn.
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E s,t
2 = Hs(Q/H;πt(ktZ/2))⇒ πt−s(ktQ)
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The Adams-graded E4 = E∞ page. ◦ = k.
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E s,t
2 = Ĥs(Q/H;πt(ktZ/2))⇒ πt−s((ktZ/2)tQ/H)
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The Adams graded E4 page of the Tate spectral sequence. ◦ = k.
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Corollary (W.)
The descent spectral sequence for StMod(kQ) is the homotopy
fixed point spectral sequence:

Hs(Q/H;πt(pic(ktZ/2)))⇒ πt−s(pic(ktZ/2)hQ/H)

whose abutment for t = s is Pic(StMod(kQ)).

Proposition
The homotopy groups of pic(ktZ/2) are given by:

π∗(pic(ktZ/2)) ∼=


Pic(ktZ/2) ∼= 1 ∗ = 0
(k)× ∗ = 1
π∗−1(ktZ/2) ∗ ≥ 2
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The Adams graded E2 page of the Q/H-HFPSS for pic((k)tZ/2). Not all
differentials are drawn. ◦ = k, � = k×.
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The Adams graded E4 page of the HFPSS computing pic((k)tQ2n ).
◦ = k, • = Z/2, � = k×.
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Theorem (Carlson-Thévenaz, W., in progress)
Let ω denote a cube root of unity.

Pic(StMod(kQ8)) ∼=
{

Z/4 if ω /∈ k
Z/4⊕ Z/2 if ω ∈ k

Theorem (Carlson-Thévenaz, W., in progress)
Let n ≥ 4.

Pic(StMod(kQ2n )) ∼= Z/4⊕ Z/2
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Future Directions

I Generalizations - Compute Pic(StMod(kG)) for G dihedral
and semi-dihedral, and ultimately G extraspecial or almost
extraspecial. Also, for non-p-groups with periodic cohomology.

I Tensor-Triangulated Geometry - Compute
Pic(Γp(StMod(kG))), where Γp(StMod(kG)) denotes a thick
or localizing tensor-ideal subcategory of StMod(kG).

I Categorify the Dade group of endo-permutation modules.
I Further HFPSS or Tate spectral sequence calculations.
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