Picard Groups of the Stable Module Category for Quaternion Groups

Richard Wong

electronic Algebraic Topology Employment Network 2020

Slides can be found at http://www.ma.utexas.edu/users/richard.wong/

Theorem (Carlson-Thévenaz, W., in progress)

Let ω denote a cube root of unity.

$$\mathsf{Pic}(\mathsf{StMod}(kQ_8)) \cong \left\{ egin{array}{ll} \mathbb{Z}/4 & \textit{if } \omega
otin k \\ \mathbb{Z}/4 \oplus \mathbb{Z}/2 & \textit{if } \omega \in k \end{array}
ight.$$

Theorem (Carlson-Thévenaz, W., in progress)

Let $n \geq 4$.

$$\mathsf{Pic}(\mathsf{StMod}(kQ_{2^n})) \cong \mathbb{Z}/4 \oplus \mathbb{Z}/2$$

Theorem (Carlson-Thévenaz, W.)

$$\mathsf{Pic}(\mathsf{StMod}(\mathbb{F}_2Q_8))\cong \mathbb{Z}/4$$

Theorem (Carlson-Thévenaz, W.)

Let $n \geq 4$.

$$\mathsf{Pic}(\mathsf{StMod}(\mathbb{F}_2 Q_{2^n})) \cong \mathbb{Z}/4 \oplus \mathbb{Z}/2$$

Definition

The **Picard group** of a symmetric monoidal category $(\mathcal{C}, \otimes, 1)$, denoted $\text{Pic}(\mathcal{C})$, is the set of isomorphism classes of invertible objects X, with

$$[X] \cdot [Y] = [X \otimes Y]$$
$$[X]^{-1} = [\mathsf{Hom}_{\mathcal{C}}(X, 1)]$$

Example (Hopkins-Mahowald-Sadofsky)

For $(Sp, \wedge, \mathbb{S}, \Sigma)$ the stable symmetric monoidal category of spectra,

$$\mathsf{Pic}(\mathsf{Sp})\cong \mathbb{Z}$$

Given a symmetric monoidal ∞ -category \mathcal{C} , one can do better than the Picard group:

Definition

The **Picard space** $\mathcal{P}ic(\mathcal{C})$ is the ∞ -groupoid of invertible objects in \mathcal{C} and isomorphisms between them.

This is a group-like E_{∞} -space, and so we equivalently obtain the connective **Picard spectrum** $\mathfrak{pic}(\mathcal{C})$.

Proposition (Mathew-Stojanoska)

The functor $\mathfrak{pic}:\mathsf{Cat}^\otimes\to\mathsf{Sp}_{\geq 0}$ commutes with limits and filtered colimits.

Example

Let R be an E_{∞} -ring spectrum. Then Mod(R) is a stable symmetric monoidal ∞ -category.

The homotopy groups of $\mathfrak{pic}(R) := \mathfrak{pic}(Mod(R))$ are given by:

$$\pi_*(\mathfrak{pic}(R))\cong \left\{egin{array}{ll} \operatorname{Pic}(R) & *=0 \ (\pi_0(R))^{ imes} & *=1 \ \pi_{*-1}(\mathfrak{gl}_1(R))\cong \pi_{*-1}(R) & *\geq 2 \end{array}
ight.$$

Note that the isomorphism $\pi_*(\mathfrak{gl}_1(R)) \cong \pi_*(R)$ for $* \geq 1$ is usually not compatible with the ring structure.

Galois Descent

Theorem (Mathew-Stojanoska)

If $f: R \to S$ is a **faithful** G-**Galois extension** of E_{∞} ring spectra, then we have an equivalence of ∞ -categories

$$Mod(R) \cong Mod(S)^{hG}$$

Corollary

We have the **homotopy fixed point spectral sequence**, which takes in input the spectrum pic(S) and has E_2 page:

$$H^s(G; \pi_t(pic(S)) \Rightarrow \pi_{t-s}(pic(S)^{hG})$$

whose abutment for t = s is Pic(R).

I study the **modular representation theory** of finite groups G over a field k of characteristic p, such that $p \mid |G|$.

Definition

The group of endo-trivial modules is the group

$$T(G) := \{ M \in \mathsf{Mod}(kG) \mid \mathsf{End}_k(M) \cong k \oplus P \}$$

where k is the trivial kG-module, and P is a projective kG-module.

We can understand this group as the Picard group of the **stable** module category StMod(kG):

$$T(G) \cong Pic(StMod(kG))$$

Definition

The **stable module category** StMod(kG) has objects kG-modules, and has morphisms

$$\underline{\mathsf{Hom}}_{kG}(M,N) = \mathsf{Hom}_{kG}(M,N)/\mathsf{PHom}_{kG}(M,N)$$

where $PHom_{kG}(M, N)$ is the linear subspace of maps that factor through a projective module.

Proposition

 $\mathsf{StMod}(kG)$ is a stable symmetric monoidal ∞ -category.

From now on, we restrict our attention to the case that G is a finite p-group, so that the following theorem holds:

Theorem (Mathew, Schwede-Shipley)

There is an equivalence of symmetric monoidal ∞ -categories

$$\mathsf{StMod}(kG) \simeq \mathsf{Mod}(k^{tG})$$

Where k^{tG} is an E_{∞} ring spectrum called the G-Tate construction.

We will use descent methods to compute

$$Pic(StMod(kG)) \cong Pic(k^{tG})$$

Let the spectrum $k^{hG} \simeq F(BG_+, k)$ denote the *G*-homotopy fixed points of k with the trivial action.

Proposition

There is an isomorphism of graded rings

$$\pi_{-*}(k^{hG}) \cong H^*(G;k)$$

There is also $k_{hG} = BG_+ \wedge k$, the G-homotopy orbits with the trivial action.

Proposition

There is an isomorphism

$$\pi_*(k_{hG}) \cong H_*(G; k)$$

Just like there is a norm map in group cohomology

$$N_G: H_*(G; k) \rightarrow H^*(G; k)$$

there is a norm map $N_G: k_{hG} \to k^{hG}$.

And just as one can stitch together group homology and cohomology via the norm map to form Tate cohomology,

$$\widehat{H}^{i}(G; k) \cong \begin{cases} H^{i}(G; k) & i \geq 1\\ \operatorname{coker}(N_{G}) & i = 0\\ \ker(N_{G}) & i = -1\\ H_{-i-1}(G; k) & i \leq -2 \end{cases}$$

Definition

The *G*-**Tate construction** is the cofiber of the norm map:

$$k_{hG} \xrightarrow{N_G} k^{hG} \rightarrow k^{tG}$$

Theorem

We have the **Tate spectral sequence**, which takes in input a spectrum R with a G-action, and computes $\pi_*(R^{tG})$:

$$E_2^{s,t}(R) = \widehat{H}^s(G; \pi_t(R)) \Rightarrow \pi_{t-s}(R^{tG})$$

Proposition

For G with the trivial action, there is an isomorphism

$$\pi_{-*}(k^{tG}) \cong \widehat{H}^*(G;k)$$

Theorem (Mathew, Schwede-Shipley)

There is an equivalence of symmetric monoidal ∞ -categories

$$\mathsf{StMod}(kQ) \simeq \mathsf{Mod}(k^{tQ})$$

Where k^{tQ} is an E_{∞} ring spectrum called the Q-Tate construction.

Theorem (Mathew-Stojanoska)

If $R \to S$ is a faithful G-Galois extension of E_∞ ring spectra, then we have the HFPSS:

$$H^s(G; \pi_t(pic(S)) \Rightarrow \pi_{t-s}(pic(S)^{hG})$$

whose abutment for t = s is Pic(R).

Definition

A map $f:R \to S$ of E_{∞} -ring spectra is a $G ext{-}\mathbf{Galois}$ extension if the maps

- (i) $i: R \to S^{hG}$
- (ii) $h: S \otimes_R S \to F(G_+, S)$

are weak equivalences.

Definition

A G-Galois extension of E_{∞} -ring spectra $f: R \to S$ is said to be **faithful** if the following property holds:

If M is an R-module such that $S \otimes_R M$ is contractible, then M is contractible.

Proposition (Rognes)

A G-Galois extension of E_{∞} -ring spectra $f: R \to S$ is faithful if and only if the Tate construction S^{tG} is contractible.

Theorem (W.)

For Q a quaternion group with center $H \cong \mathbb{Z}/2$,

$$k^{hQ}
ightarrow k^{h\mathbb{Z}/2}$$
 and $k^{tQ}
ightarrow k^{t\mathbb{Z}/2}$

are faithful Q/H-Galois extensions of ring spectra.

$$E_2^{s,t} = H^s(Q/H; \pi_t(k^{t\mathbb{Z}/2})) \Rightarrow \pi_{t-s}(k^{tQ})$$

The Adams-graded HFPSS. $\circ = k$. Not all differentials are drawn.

$$E_2^{s,t} = H^s(Q/H; \pi_t(k^{t\mathbb{Z}/2})) \Rightarrow \pi_{t-s}(k^{tQ})$$

The Adams-graded $E_4 = E_{\infty}$ page. $\circ = k$.

$$E_2^{s,t} = \widehat{H}^s(Q/H; \pi_t(k^{t\mathbb{Z}/2})) \Rightarrow \pi_{t-s}((k^{t\mathbb{Z}/2})^{tQ/H})$$

The Adams graded E_4 page of the Tate spectral sequence. $\circ = k$.

Corollary (W.)

The descent spectral sequence for StMod(kQ) is the homotopy fixed point spectral sequence:

$$H^{s}(Q/H; \pi_{t}(\operatorname{pic}(k^{t\mathbb{Z}/2}))) \Rightarrow \pi_{t-s}(\operatorname{pic}(k^{t\mathbb{Z}/2})^{hQ/H})$$

whose abutment for t = s is Pic(StMod(kQ)).

Proposition

The homotopy groups of $\mathfrak{pic}(k^{t\mathbb{Z}/2})$ are given by:

$$\pi_*(\mathfrak{pic}(k^{t\mathbb{Z}/2}))\cong \left\{egin{array}{ll} \operatorname{Pic}(k^{t\mathbb{Z}/2})\cong 1 & *=0 \ (k)^{ imes} & *=1 \ \pi_{*-1}(k^{t\mathbb{Z}/2}) & *\geq 2 \end{array}
ight.$$

The Adams graded E_2 page of the Q/H-HFPSS for $\mathfrak{pic}((k)^{t\mathbb{Z}/2})$. Not all differentials are drawn. $\circ = k$, $\blacklozenge = k^{\times}$.

The Adams graded E_4 page of the HFPSS computing $pic((k)^{tQ_{2^n}})$. $\circ = k, \bullet = \mathbb{Z}/2, \blacklozenge = k^{\times}.$

Theorem (Carlson-Thévenaz, W., in progress)

Let ω denote a cube root of unity.

$$\mathsf{Pic}(\mathsf{StMod}(kQ_8)) \cong \left\{ egin{array}{ll} \mathbb{Z}/4 & \textit{if } \omega
otin k \\ \mathbb{Z}/4 \oplus \mathbb{Z}/2 & \textit{if } \omega \in k \end{array}
ight.$$

Theorem (Carlson-Thévenaz, W., in progress)

Let $n \geq 4$.

$$\mathsf{Pic}(\mathsf{StMod}(kQ_{2^n})) \cong \mathbb{Z}/4 \oplus \mathbb{Z}/2$$

Future Directions

- ▶ Generalizations Compute Pic(StMod(kG)) for G dihedral and semi-dihedral, and ultimately G extraspecial or almost extraspecial. Also, for non-p-groups with periodic cohomology.
- ► Tensor-Triangulated Geometry Compute $Pic(\Gamma_p(StMod(kG)))$, where $\Gamma_p(StMod(kG))$ denotes a thick or localizing tensor-ideal subcategory of StMod(kG).
- Categorify the Dade group of endo-permutation modules.
- ► Further HFPSS or Tate spectral sequence calculations.

References

Carlson, Jon F., and Thévenaz, Jacques.

Torsion Endo-Trivial Modules.

Algebras and Representation Theory 3 (4): 303–35, 2000.

Mathew, Akhil, and Stojanoska, Vesna.

The Picard group of topological modular forms via descent theory.

Geom. Topol. 20 (6): 3133-3217, 2016.

Mathew, Akhil.

The Galois group of a stable homotopy theory.

Advances in Mathematics 291: 403-541, 2016.