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R-modules

Let R be a commutative ring.

Instead of trying to study R by itself, one might instead study
Mod(R), the category of modules over R.

In Mod(R), we have an operation called tensor product, denoted
⊗R or ⊗, which satisfies the following properties:

1. It has a unit, given by R: M ⊗R R ∼= M ∼= R ⊗R M.

2. It is associative: (M ⊗ N)⊗ P ∼= M ⊗ (N ⊗ P).

3. It is symmetric: M ⊗ N ∼= N ⊗M.

Given an R-module N, we have a functor

−⊗R N : Mod(R)→ Mod(R)
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R-modules

Question: When is −⊗ N : Mod(R)→ Mod(R) an equivalence of
categories?

Theorem

The following are equivalent:

(i) −⊗ N : Mod(R)→ Mod(R) is an equivalence of categories.

(ii) There exists an R-module M such that M ⊗ N ∼= R. We say
that N is invertible.

(iii) N is finitely generated projective of rank 1.

In fact, in case (ii) we have that M ∼= HomR(N,R).
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R-modules

Observation: The set of isomorphism classes of invertible
R-modules has a group structure:

Definition

The Picard group of R, denoted Pic(R), is the set of isomorphism
classes of invertible modules, with

[M] · [N] = [M ⊗ N]

[M]−1 = [HomR(M,R)]
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R-modules

Example

For R a local ring or PID, Pic(R) is trivial.

Proof.

For local rings/PIDs, a module is projective iff it is free. Hence
M ∈ Pic(R) iff M is a free rank 1 R-module.
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Chain Complexes of R-modules

Chain Complexes of R-modules

Let’s see what happens if we work with chain complexes of
R-modules, Ch(R), instead.

Definition

The tensor product of two chain complexes X• and Y• is defined at
degree n by

(X ⊗ Y )n = ⊕i+j=nXi ⊗ Yj

This tensor product is also associative and symmetric, and has unit
given by R[0].
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Chain Complexes of R-modules

Question: When is Y• invertible?

Theorem

The following are equivalent for a local ring R:

(i) Y• is invertible. That is, there exists a chain complex X• such
that X• ⊗ Y• ∼= R[0].

(ii) Y• is the chain complex R[n], that is, the complex R
concentrated in a single degree n.

Example

For R a local ring, Pic(Ch(R)) is isomorphic to Z.
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Symmetric Monoidal Categories

To define Pic(R) and Pic(Ch(R)) we only really needed the
associative, symmetric, and unital structure of ⊗.

Definition

Suppose we have a category C that has bifunctor ⊗ : C × C → C
with unit 1 and is associative and symmetric.
Then we say that (C,⊗, 1) is a symmetric monoidal category.

Example

The following categories are symmetric monoidal:

(a) (Set,×, {∗})
(b) (Group,×, {e})
(c) (Mod(R),⊗,R)
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Symmetric Monoidal Categories

Definition

The Picard group of a symmetric monoidal category (C,⊗, 1),
denoted Pic(C), is the set of isomorphism classes of invertible
objects X , with

[X ] · [Y ] = [X ⊗ Y ]

[M]−1 = [HomC(X , 1)]

Example

We have that Pic(R) = Pic(Mod(R)).
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Stable Symmetric Monoidal Categories

However, we had more interesting structure in Pic(Ch(R)) since we
could shift the unit R[0] up or down.

“Definition”

A symmetric monoidal category (C,⊗, 1) is called stable if it also
has a suspension functor Σ : C → C that is an equivalence of
categories.
In addition, Σ should play nicely with the tensor product. That is,
Σ(A⊗ B) ∼= ΣA⊗ B.

Warning: This definition is only right when using ∞-categories.
Alternatively, we can make a similar definiton using triangulated
categories.
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Stable Symmetric Monoidal Categories

Example

The following categories are stable symmetric monoidal:

(a) (D(R), ⊗̂R ,R[0],−[1]) for R a commutative ring.

(b) (Sp,∧, S,Σ)

(c) (Mod(R),∧R ,R,Σ) for R a commutative ring spectrum.

(d) (LE (Sp), LE (− ∧−), LES,Σ) for a spectrum E . In particular,
E = E (n) or K (n).

(e) (StMod(kG ),⊗k , k,Ω
−1) for G a p-group and k a field of

characteristic p.

Richard Wong University of Texas at Austin

Algebraic Methods for Computing Picard Groups



Classical Cases Generalizations Picard Group Examples

Spectra

Proposition

Suppose that (C,⊗, 1,Σ) is a stable symmetric monoidal category.
Then one has a natural map

Z ↪→ Pic(C)

n 7→ Σn1
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Spectra

Theorem (Hopkins-Mahowald-Sadofsky)

Pic(Sp) ∼= Z

Proof.

Since X ∈ Pic(Sp), it is dualizable and therefore finite. We can
then assume X is connected.
Then look at the homology of X with field coefficients for all fields
and use the Künneth Theorem.
We can then deduce H∗(X ) ∼= H0(X ) ∼= Z and hence X ' S by the
stable Hurewicz and Whitehead theorem.
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R-Module Spectra

Definition

A (commutative) ring spectrum R is a (commutative) ring object
in the category of spectra. That is, it has a multiplication that is
unital and associative (and commutative).

Example

The following are examples of commutative ring spectra:

(a) S
(b) Given a discrete ring R, we can form the Eilenberg-Maclane

spectrum HR. Note that π∗(HR) = R, viewed as a graded
ring concentrated in degree 0.

(c) KU, KO, MU, E (n).
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R-Module Spectra

Proposition (Baker-Richter)

We have a monomorphism

Φ : Pic(π∗(R)) ↪→ Pic(R)

Proof.

Given M∗, we build M as a homotopy colimit of free R modules,
and use the Künneth Spectral Sequence to check M is a Picard
group element.

E 2
p,q = TorR∗

p,q(M∗,N∗)⇒ πp+q(M ∧R N)
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R-Module Spectra

Definition

When Φ : Pic(π∗(R))→ Pic(R) is an isomorphism, then we say
that Pic(R) is algebraic.

Theorem (Baker-Richter)

For a connective commutative ring spectrum R, Pic(R) is
algebraic.

Theorem (Baker-Richter)

For a weakly even periodic E∞ ring spectrum with π0(R) regular
Noetherian, Pic(R) is algebraic.
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R-Module Spectra

“Theorem” (Hopkins)

For the spectra K (n) and E (n) at some fixed prime p, the Picard
groups Pic(LE(n)(Sp)) and Pic(LK(n)(Sp)) are extremely
interesting.

Theorem (Hovey-Sadofsky, Kamiya-Shimomura)

X ∈ Pic(LE(n)(Sp) if and only if there is an isomorphism
E (n)∗(X ) ∼= E (n)∗ as E (n)∗E (n) comodules.

Example

For n = 1, p = 2, Pic(LE(n)(Sp)) ∼= Z⊕ Z/2.
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R-Module Spectra

Definition

The E (n)-based Adams spectral sequence, which takes in input a
spectrum X and has E2 page:

E s,t
2 (X ) = ExtsE(n)∗E(n)(E (n)∗,E (n)t(X ))⇒ πs+t(LnX )

and differential (for r ≥ 2)

dr : E s,t
2 → E s+r ,t+r−1

r
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R-Module Spectra

Theorem (Mathew-Stojanoska)

If f : R → S is a faithful G -Galois extension of ring spectra, then
we have an equivalence of ∞-categories

Mod(R)→ Mod(S)hG

Corollary

The homotopy fixed point spectral sequence, which takes in input
the spectrum pic(S) and has E2 page:

Hs(G ;πt(pic(S))⇒ πt−s(pic(S)hG )

whose abutment for t = s is Pic(R).
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R-Module Spectra

Thanks for listening!
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