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Problem Session

There will be an interactive problem session every day, and
participation is strongly encouraged.
We are using the free (sign-up required) A Web Whiteboard
website. The link will be posted in the chat, as well as on the slack
channel.
Future problem sessions will be from 1-1:30pm and 2:30-3pm CDT.
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Motivation

Let X̃ → X be a universal cover of X , with π1(X ) = G .
What can one say about the relationship between H∗(X̃ ;Q) and
H∗(X ;Q)?

Theorem
There is an isomorphism H∗(X ;Q)→ (H∗(X̃ ;Q))G

Proof.
The sketch involves looking at the cellular cochain complex for X ,
lifting it to a cellular cochain complex for X̃ that is compatible
with the G action...
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How can we generalize this theorem?

Definition
Let F → E → B be a Serre fibration with B path-connected. We
then have the Serre spectral sequence for cohomology (with
coefficients A):

E s,t
2 = Hp(B; Hq(F ; A))⇒ Hp+q(E ; A)

with differential
dr : E s,t

r → E s+r ,t−r+1
r
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The key property of covering spaces that we use is the homotopy
lifting property:

Definition (Homotopy lifting property)
A map f : E → B has the homotopy lifting property with respect
to a space X if for any homotopy gt : X × I → B and any map
g̃0 : X → E , there exists a map g̃t : X × I → E lifting the
homotopy gt .

X E

X × I B

X×{0}

g̃0

f

gt

∃g̃t
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Definition
A map f : E → B is called a (Hurewicz) fibration if it has the
homotopy lifting property for all spaces X .

Definition
A map f : E → B is called a Serre fibration if it has the homotopy
lifting property for all disks (or equivalently, CW complexes).

We will only consider fibrations with B path-connected. This
implies that the fibers F = f −1(b) are all homotopy equivalent,
and so we write fibrations in the form

F → E → B
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Example
The universal cover X̃ → X is a fibration with fiber F = π1(X ).

Example
The projection map X × Y p1−→ X is a fibration with fiber Y .

Example
The Hopf map S1 → S3 → S2 is a fibration.
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Example
For any based space (X , ∗), there is the path space fibration

ΩX → X I → X
Where X I is the space of continuous maps f : I → X with
f (0) = ∗. Note that X I ' ∗.

Example
For G abelian, and n ≥ 1, we have fibrations

K (G , n)→ ∗ → K (G , n + 1)

Example
For G a group, we have the fibration G → EG → BG
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Given a Serre fibration F → E → B, how can we relate the
cohomology of E to the cohomology of B?

Remark
Note that by putting a CW-structure on B, we have a filtration

B0 ⊆ B1 ⊆ · · · ⊆ B

This lifts to the Serre filtration on E:

E0 = p−1(B0) ⊆ E1 = p−1(B1) ⊆ · · · ⊆ E
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Using the Serre filtration, we can assemble the long exact
sequences in relative cohomology:

Hn−1(Es) Hn(Es+1,Es) Hn(Es+1) Hn+1(Es+2,Es+1) Hn+1(Es+2)

Hn−1(Es−1) Hn(Es ,Es−1) Hn(Es) Hn+1(Es+1,Es) Hn+1(Es+1)

Hn−1(Es−2) Hn(Es−1,Es−2) Hn(Es−1) Hn+1(Es ,Es−1) Hn+1(Es)

We obtain a long exact sequence

· · · → Hn(Es+1) i−→ Hn(Es) j−→ Hn+1(Es+1,Es) k−→ Hn+1(Es+1)→ · · ·
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We can rewrite this long exact sequence as an unrolled exact
couple:

H∗(E ) · · · H∗(Es+1) H∗(Es) H∗(Es−1) · · ·

H∗(Es+1,Es) H∗(Es ,Es−1)

i i

j j
k k

Remark
Observe that this diagram is not commutative.
Furthermore, since k ◦ j = 0, the composite

d := j ◦ k : H∗(Es ,Es−1)→ H∗(Es+1,Es)

can be thought of as a chain complex differential, as d2 = 0.
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We have a bigraded chain complex

· · · → H∗(Es−1,Es) d−→ H∗(Es ,Es−1) d−→ H∗(Es+1,Es)→ · · ·

We call this chain complex the E1 page of the Serre spectral
sequence.
I How does this chain complex relate to H∗(E )?
I How does this chain complex relate to H∗(B) and H∗(F )?
I What happens if we take the homology of this chain complex?

I We get another exact couple, and the E2 page of the Serre
spectral sequence.
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Definition
Let F → E → B be a Serre fibration with B path-connected. We
then have the Serre spectral sequence for cohomology (with
coefficients A):

E s,t
2 = Hp(B; Hq(F ; A))⇒ Hp+q(E ; A)

with differential
dr : E s,t

r → E s+r ,t−r+1
r
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Remark
Some formulations of the Serre spectral sequence require that
π1(B) = 0, or that π1(B) acts trivially on H∗(F ; A).
This assumption only exists so that one only needs to consider
ordinary cohomology, as opposed to working with cohomology with
local coefficients.
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0 1 2 3 4 5 6

0
1
2
3
4

An example E2 page of the Serre Spectral Sequence. ◦ = Z, • = Z/2.
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0 1 2 3 4 5 6

0
1
2
3
4

An example E3 page of the Serre Spectral Sequence. ◦ = Z, • = Z/2.
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0 1 2 3 4 5 6

0
1
2
3
4

An example E4 = E∞ page of the Serre Spectral Sequence. ◦ = Z,
• = Z/2.
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In the Serre spectral sequence, we have that E s,t
r ∼= E s,t

r+1 for
sufficiently large r . We call this the E∞-page.
Moreover, the spectral sequence converges to H∗(E ; A) in the
following sense: The E∞-page is isomorphic to the associated
graded of H∗(E ).
This means that for F t

s = ker(Ht(E )→ Ht(Es−1)), we have⊕
t

E s,t
∞
∼=

⊕
t

F t
s /F t+1

s

Therefore, we can calculate H∗(E ; A) up to group extension. We
can sometimes recover the multiplicative structure of H∗(E ; A) as
well.
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0 1 2 3 4 5 6

0
1
2
3
4

An example E4 = E∞ page of the Serre Spectral Sequence. ◦ = Z,
• = Z/2.
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Definition
Let F → E → B be a Serre fibration with B path-connected. We
then have the Serre spectral sequence for cohomology (with
coefficients A):

E s,t
2 = Hp(B; Hq(F ; A))⇒ Hp+q(E ; A)

with differential
dr : E s,t

r → E s+r ,t−r+1
r
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Example
Consider the path space fibration K (Z, 1)→ K (Z, 2)I → K (Z, 2)
We know that K (Z, 1) ' S1, and we know K (Z, 2)I ' ∗

0 1 2 3 4 5 6

0
1 a b c d e f g

a b c d e f g

The E2 page and possible non-trivial differentials

Since K (Z, 2) is connected, a ∼= Z. Therefore, the d2 out of (0, 1)
must be non-trivial, and in fact an isomorphism.

Arun Debray and Richard Wong University of Texas at Austin
Spectral Sequence Training Montage, Day 1



Motivations The Serre Spectral Sequence

Example
Similarly, since b in (1, 0) cannot hit or be hit by a d2 differential,
it must be trivial.

0 1 2 3 4 5 6

0
1

The E3 = E∞ page. ◦ = Z.

Hence Hs(K (Z, 2);Z) ∼=
{

Z s even,≥ 0
0 else .

In fact, K (Z, 2) ' CP∞.
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Recall that H∗(E ; R) has a ring structure if we take coefficients in
a ring R. This is compatible with the Serre spectral sequence:
Each dr is a derivation, satisfying

dr (xy) = dr (x)y + (−1)p+qxdr (y)

for x ∈ E s,t
r , y ∈ E s′,t′

r . This induces a product structure on each
Er , and hence a product stucture on the E∞-page.
The product structure on E2 is derived from the multiplication

Hs(B; Ht(F ; R))× Hs′(B; Ht′(F ; R))→ Hs+s′(B; Ht+t′(F ; R))

The multiplication on H∗(E ; R) restricts to the associated graded,
and is identified with the product on E∞.
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Warning
The ring structure on E∞ may not determine the ring structure on
H∗(E ). See the exercises for a counterexample.
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0 1 2 3 4 5 6

0
1 Za Zax Zax2 Zax3

Z1 Zx Zx2 Zx3

The E2 page for K (Z, 1)→ K (Z, 2)I → K (Z, 2).

Since d2 : Za→ Zx is an isomorphism, we may assume that
d2(a) = x . Furthermore,

d2(ax i ) = d2(a)x i + d2(x i )a = d2(a)x i

Therefore, H∗(K (Z, 2);Z) ∼= Z[x ]. In fact, K (Z, 2) ' CP∞.
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Problem Session

You can find the exercises at
https://web.ma.utexas.edu/SMC/2020/Resources.html.
We are using the free (sign-up required) A Web Whiteboard
website. The link will be posted in the chat, as well as on the slack
channel.
Future problem sessions will be from 1-1:30pm and 2:30-3pm CDT.
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