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Invertible Objects Classical Cases Generalizations

How many numbers have inverses?

I (N,×) has one invertible element, 1.
I (N≥0,+) has one invertible element, 0.
I (Z,×) has two invertible elements, 1 and −1.
I (Z,+) every element is invertible.
I (Q,×) every element except 0 is invertible.
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Invertible Objects Classical Cases Generalizations

Recall that a ring R is a set with two operations, + and × such
that
I + is associative and commutative, with additive identity 0.
I Every element has an additive inverse.
I × is associative, with multiplicative identity 1.
I Distributive axioms.

Example
Our favorite examples of rings include Z, Q, R, Z/n, Z[x ], Q[x ].
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Given a ring R, one can always ask what the invertible elements
(with respect to ×) are.

Definition
The set of invertible elements in a ring R is denoted by

R× := {r ∈ R | r × s = s × r = 1}

Note that 0 is never in R× (except if R = 0).
Note that R× is closed under ×, and in fact forms a group under
×. It is usually referred to as the group of units.
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Example

I Z× = {1,−1}
I Q× = Q \ 0
I R× = R \ 0
I (Z/n)× = {[m] | 0 ≤ m ≤ n,m coprime to n}
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Invertible Objects Classical Cases Generalizations

Question: When is an element r of R invertible?

Theorem
The following are equivalent:

(i) There exists an element of R, s, such that r × s = 1.
(ii) The map given by multiplication by r : R → R is an

isomorphism.

Richard Wong University of Texas at Austin
Invertible Objects: An Elementary Introduction to Picard Groups
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Proposition
For R a commutative ring, the group of units of R[x ] is as follows:

(R[x ])× = {p(x) | p(x) =
∑

ai x i such that a0 ∈ R×, ai nilpotent}

Challenge: Prove it!

Example
If R is an integral domain, then (R[x ])× = R×.
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R-modules

How can we generalize this idea?

From now onwards, let R be a commutative ring.
Instead of trying to study R by itself, one might instead study
Mod(R), the category of modules over R.
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R-modules

Recall that an R-module is an abelian group (M,+), and an
operation · : R ×M → M such that
I · is associative
I 1 ·m = m for all m ∈ M
I · is distributive over addition.

Example
If k is a field, then k-modules are exactly the same as k-vector
spaces.
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Invertible Objects Classical Cases Generalizations

R-modules

Example
For R = Z, the notion of Z-module is exactly the same as an
abelian group. (That is, every abelian group is a module over Z in
a unique way.)
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Invertible Objects Classical Cases Generalizations

R-modules

In Mod(R), we have an operation called tensor product, denoted
⊗R or ⊗, which satisfies the following properties:

1. It has a unit, given by R: M ⊗R R ∼= M ∼= R ⊗R M.
2. It is associative: (M ⊗ N)⊗ P ∼= M ⊗ (N ⊗ P).
3. It is symmetric: M ⊗ N ∼= N ⊗M.
4. It distributes over direct sums:

(M ⊕ N)⊗ P ∼= (M ⊗ P)⊕ (N ⊗ P).
5. The scalar multiplication on M ⊗ N is given by scalar

multiplication on M or equivalently by scalar multiplication on
N (which are forced to be equal).
r · (M ⊗ N) ∼= (r ·M)⊗ N ∼= M ⊗ (r · N).
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R-modules

Example
If k is a field, and V and W are modules (vector spaces) over k
with bases {ei} and {fj} respectively, then V ⊗W is defined to be
the vector space with basis given by {ei ⊗ fj}.
For example, on elements, if v = a1e1 + a2e2 ∈ V and
w = b1f1 + b2f2 ∈W , then
v ⊗ w = a1e1 ⊗ b1f1 + a1e1 ⊗ b2f2 + a2e2 ⊗ b1f1 + a2e2 ⊗ b2f2
= a1b1(e1 ⊗ f1) + a1b2(e1 ⊗ f2) + a2b1(e2 ⊗ f1) + a2b2(e2 ⊗ f2).

Challenge: Does v ⊗ w depend on the choice of basis?
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R-modules

Example
However, if R is a commutative ring, and M and N are R-modules,
then M ⊗ N is merely spanned by elements m ⊗ n.
We have distributivity:

(m + m′)⊗ n = m ⊗ n + m′ ⊗ n

m ⊗ (n + n′) = m ⊗ n + m ⊗ n′

And scalar multiplication tells us:

r · (m ⊗ n) = (r ·m)⊗ n = m ⊗ (r · n)

Challenge: How can we define equality of elements without a
basis?
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R-modules

Question: When is a module N invertible with respect to ⊗?
Given an R-module N, we have a functor

−⊗R N : Mod(R)→ Mod(R)

Analogy: Given an element r ∈ R, we have a map −× r : R → R.
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R-modules

Theorem
The following are equivalent:

(i) There exists an R-module M such that M ⊗ N ∼= R. We say
that N is invertible.

(ii) −⊗ N : Mod(R)→ Mod(R) is an equivalence of categories.
(Analogy: −× r : R → R an isomorphism)

(iii) N is finitely generated projective module of rank 1.
In fact, in case (ii) we have that M ∼= HomR(N,R).
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R-modules

Observation: The set of isomorphism classes of invertible
R-modules has a group structure:

Definition
The Picard group of R, denoted Pic(R), is the set of isomorphism
classes of invertible modules, with

[M] · [N] = [M ⊗ N]

[M]−1 = [HomR(M,R)]
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R-modules

Example
For R a local ring or PID, Pic(R) is trivial.

Proof.
For local rings/PIDs, a module is projective iff it is free. Hence
M ∈ Pic(R) iff M is a free rank 1 R-module.
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Chain Complexes of R-modules

Chain Complexes of R-modules

Let’s see what happens if we work with chain complexes of
R-modules, Ch(R), instead.

Definition
A chain complex of R-modules is a sequence of R-modules Ak ,
along with homomorphisms (called differentials) dk : Ak → Ak−1,
such that for all k, dk ◦ dk+1 = 0.

· · · dk+2−−−→ Ak+1
dk+1−−−→ Ak

dk−→ Ak−1
dk−1−−−→ · · ·
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Chain Complexes of R-modules

Chain Complexes of R-modules

Example
Given an integer n, and an R-module M, there is a chain complex
M[n] given by

(M[n])k =
{

M k = n
0 else

· · · → 0→ M → 0→ · · ·
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Chain Complexes of R-modules

Chain Complexes of R-modules

Definition
The tensor product of two chain complexes X• and Y• is defined at
degree n by

(X ⊗ Y )k =
⊕

i+j=k
(Xi ⊗ Yj)

This tensor product is also associative and symmetric, and has unit
given by R[0].
Challenge: What are the differentials for (X ⊗ Y )•?
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Chain Complexes of R-modules

Question: When is Y• invertible?

Theorem
The following are equivalent for a local ring R:

(i) Y• is invertible. That is, there exists a chain complex X• such
that X• ⊗ Y• ∼= R[0].

(ii) −⊗ Y• : Ch(R)→ Ch(R) is an equivalence of categories.
(iii) Y• is the chain complex R[n], that is, the complex R

concentrated in a single degree n.

Example
For R a local ring, Pic(Ch(R)) is isomorphic to Z.
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Symmetric Monoidal Categories

Generalizations

What did we need to define Pic(R) and Pic(Ch(R))?
We only really needed the associative, symmetric, and unital
structure of ⊗.

Definition
Suppose we have a category C that has bifunctor ⊗ : C × C → C
with unit 1 and is associative and symmetric.
Then we say that (C,⊗, 1) is a symmetric monoidal category.
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Symmetric Monoidal Categories

Example
The following categories are symmetric monoidal:
(a) (Set,×, {∗})
(b) (Group,×, {e})
(c) (Mod(R),⊗,R)
(d) (Ch(R),⊗,R[0])
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Symmetric Monoidal Categories

Definition
The Picard group of a symmetric monoidal category (C,⊗, 1),
denoted Pic(C), is the set of isomorphism classes of invertible
objects X , with

[X ] · [Y ] = [X ⊗ Y ]

[M]−1 = [HomC(X , 1)]

Example
We have that Pic(R) = Pic(Mod(R)).
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Stable Symmetric Monoidal Categories

However, we had more interesting structure in Pic(Ch(R)) since we
could shift the unit R[0] up or down.

“Definition”
A symmetric monoidal category (C,⊗, 1) is called stable if it also
has a suspension functor Σ : C → C that is an equivalence of
categories.
In addition, Σ should play nicely with the tensor product. That is,
Σ(A⊗ B) ∼= ΣA⊗ B.

Warning: This definition is only right when using ∞-categories.
(Stable has homotopical meaning). Alternatively, we can make a
similar definiton using triangulated categories.
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Stable Symmetric Monoidal Categories

Example
The following categories are stable symmetric monoidal:
(a) (D(R), ⊗̂R ,R[0],−[1]) for R a commutative ring.
(b) (Sp,∧, S,Σ)
(c) (Mod(R),∧R ,R,Σ) for R a commutative ring spectrum.
(d) (LE (Sp), LE (− ∧−), LES,Σ) for a spectrum E . In particular,

E = E (n) or K (n).
(e) (StMod(kG),⊗k , k,Ω−1) for G a p-group and k a field of

characteristic p.
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Stable Symmetric Monoidal Categories

Theorem (Hopkins-Mahowald-Sadofsky)
Pic(Sp) ∼= Z

Proposition (Baker-Richter)
For R a commutative ring spectrum, we have a monomorphism

Φ : Pic(π∗(R)) ↪→ Pic(R)
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Stable Symmetric Monoidal Categories

“Theorem” (Hopkins)
For the spectra K (n) and E (n) at some fixed prime p, the Picard
groups Pic(LE(n)(Sp)) and Pic(LK(n)(Sp)) are extremely
interesting.

This is a subject of active research!
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Stable Symmetric Monoidal Categories

Thanks for listening!
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