
FALL 2022 32AH, CHALLENGE PROBLEM REPORT 1

Abstract. In this Challenge Problem Report, you will explore the geometry of linear maps R2 7→ R2. To

complete the first challenge problem report, you will write up solutions to the assigned problems. Your

write-up should include exposition in your own words, and read like a chapter or section of a textbook. Be
sure to clearly label your answers to the questions.

1. Linear maps and basis vectors

In lecture, we have abstractly defined maps of vector spaces, and characterized linear maps of the form
R → R. In this challenge problem report, you will explore the geometry of linear maps R2 7→ R2. The basis
of this exploration is the following theorem:

Theorem 1.1. Let V be a vector space with basis {v1, · · · ,vn}, and let W be an arbitrary vector space. A
linear map T : V → W is determined by what it does on basis vectors.

For example, let us consider the vector space R2, with the standard basis. Then we can write the vector
v = ⟨x, y⟩ ∈ R2 in terms of the standard basis:

v = xe1 + ye2

Let us consider a linear map T : R2 → R2. Observe that using linearity, we have that

T (v) = T (xe1 + ye2)

= xT (e1) + yT (e2)

Thus, if we know the values of T (e1) and T (e2) (e.g. how T acts on the basis vectors), then we can use
the above formula to calculate T (v) for any vector v ∈ R2.

Consider the matrix A =

[
2 0
0 3

4

]
. From what we saw in class, the map TA : R2 → R2 defined by

TA(v) = Av is linear. We can compute that the linear map TA sends the vector e1 = ⟨1, 0⟩ to the vector
TA(e1) = ⟨2, 0⟩, and the vector e2 = ⟨0, 1⟩ to the vector TA(e2) = ⟨0, 3

4 ⟩. Geometrically, the map looks like
this:
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It follows from theorem 1.1 that TA(⟨x, y⟩) = ⟨x2 , 2y⟩. In other words, the linear map TA stretches the

x-component by a factor of 2, and shrinks the y-component by a factor of 3
4 .

Not every linear map is as simple, however! Let us consider the linear map associated to the matrix B =[
2 1
1 2

]
. We can compute that the linear map TB sends the vector e1 = ⟨1, 0⟩ to the vector TB(e1) = ⟨2, 1⟩,

and the vector e2 = ⟨0, 1⟩ to the vector TB(e2) = ⟨1, 2⟩. Geometrically, the map looks like this:

x

y

x

y

TB



We observe that the linear map TB sends the unit square spanned by e1 and e2 to the parallelogram
spanned by TB(e1) and TB(e2). By linearity, TB then sends the grid lines to a grid of congruent parallelo-
grams.

In general, TB is a good mental image for the geometric interpretation of a linear map T : R2 → R2. This
is why linear maps are sometimes called linear transformations - as they transform the vectors in the domain
into (potentially different) vectors in the range.

In this first section, you will explore other examples of linear maps T : R2 → R2.

(1) Find a 2× 2 matrix R such that the associated linear map TR : R2 → R2 reflects vectors across the
x-axis.

(2) Fix an angle θ. Sketch and describe the linear map Tθ associated to the matrix

Rθ =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]

2. Eigenvectors and Eigenvalues

Given a matrix M ∈ M2×2(R), what other information can we extract about its associated linear map
T : R2 → R2?

If we again consider the linear map corresponding to the matrix A =

[
2 0
0 3

4

]
, we observed that TA(e1) =

⟨2, 0⟩ = 2e1, and that TA(e2) = ⟨0, 3
4 ⟩ =

3
4e2. That is, T (ei) was parallel to ei. Furthermore, these scalars

correspond precisely to how T stretched and shrunk the x and y components.

On the other hand, the linear map TB corresponding to the matrix B =

[
2 1
1 2

]
changes the direction of

the standard basis vector, so T (ei) is not parallel to ei. However, one might still ask the following question:

Is there a vector v ∈ R2 such that T (v) is parallel to v?

Definition 2.1. Let T be the linear map associated to a matrix M . (That is, T (v) = Mv).
We say that a non-zero vector v is an eigenvector of M , with eigenvalue λ if Mv = λv.

For example, if we consider the linear map TB corresponding to the matrix B =

[
2 1
1 2

]
, we observe by

inspection that if we set v = ⟨1, 1⟩, we have that TB(v) = 3v. Similarly, if we set w = ⟨−1, 1⟩, we have
that TB(w) = w. Thus, v and w are eigenvectors of TB . In fact, any scalar multiple of v or w will be
eigenvectors as well.
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Observe that in this case, the eigenvectors {⟨1, 1⟩, ⟨−1, 1⟩} form a basis for R2! (You will see in the
exercises that in general, the eigenvectors do not necessarily form a basis). Thus, we can write a vector



v = a⟨1, 1⟩+ b⟨−1, 1⟩. Then as before,

T (v) = T (a⟨1, 1⟩+ b⟨−1, 1⟩)
= aT (⟨1, 1⟩) + bT (⟨−1, 1⟩)
= 3a⟨1, 1⟩+ b⟨−1, 1⟩

This allows us to describe the geometric properties of the linear map TB : it stretches vectors by a factor
of 3 in the ⟨1, 1⟩ direction, and does nothing to the part in the ⟨−1, 1⟩ direction.

To summarize, the eigenvectors associated to a matrix M are the vectors whose lines are preserved by
the linear transformation TM . Their corresponding eigenvalues describe how the eigenvectors are stretched
by the linear transformation TM .

Given a matrix, how can one algebraically find its eigenvectors?

To answer this question properly, we will need to learn a bit more linear algebra machinery (see the bonus
food for thought section, and the course lecture notes). For now, we will use the following tool:

Definition 2.2. Let M ∈ M2×2(R) be the matrix M =

[
a b
c d

]
. The characteristic polynomial of M is

a polynomial p(λ), given by the expression

p(λ) = (a− λ)(d− λ)− bc

Theorem 2.3. The roots of the characteristic polynomial are precisely the eigenvalues of M .

Once we find the eigenvalues of M , we can find the eigenvectors associated to the eigenvalue λi by solving
the system of linear equations Mv = λiv.

For example, the characteristic polynomial of B =

[
2 1
1 2

]
is the polynomial (2 − λ)(2 − λ) − 1 ∗ 1 =

λ2 − 4λ+ 3. The roots of this polynomial are precisely λ1 = 3 and λ2 = 1. We can then solve the system of
linear equations [

2 1
1 2

] [
x
y

]
=

[
3x
3y

]
and

[
2 1
1 2

] [
x
y

]
=

[
x
y

]
to determine that the associated eigenvectors are parallel to ⟨1, 1⟩, and ⟨−1, 1⟩, respectively.

Remark 2.4. Observe that the eigenvalues of a 2× 2 matrix need not be distinct, and they may be complex
numbers. In the exercises, you will figure out what these situations correspond to geometrically.

In this section, you will use eigenvectors and eigenvalues to study linear maps.

(3) Sketch and describe the linear map TS associated to the matrix

S =

[
1 1
0 1

]
.

What are the eigenvectors of S?

(4) For what values of θ does the matrix

Rθ =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
have real eigenvalues? Prove your answer.

(5) Fix an angle θ. Does the linear map Tθ : R2 → R2 associated to the matrix

Rθ =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
have any eigenvectors? (Hint: Your answer may change based on certain values of θ.)



(6) Let a, b ∈ R such that a and b are not both zero. Sketch and describe the linear map TM associated
to the matrix

M =

[
a −b
b a

]
What are the eigenvectors of S?

3. Bonus Food for Thought

These questions/reading are optional, and do not need to be answered for full credit. You should revisit
them once we learn about determinants.

First, let us see where the formula for the characteristic polynomial p(λ) = (a−λ)(d−λ)−bc comes from:

Observe that we can write the vector equation

[
a b
c d

]
v = λv as[

a b
c d

]
v = λ

[
1 0
0 1

]
v

By properties of matrices, this is equivalent to studying the equation of the form[
a− λ b
c d− λ

]
v = 0

Since by definition, an eigenvector cannot be the 0 vector, this tell us that the linear map Tλ associated

to the matrix

[
a− λ b
c d− λ

]
sends a non-zero vector to a zero vector. In other words, Tλ cannot be an

invertible linear map (because it is not injective). When we study determinants, we will learn that a linear
map is not invertible if and only if its standard matrix has determinant equal to 0. We see immediately that

the determinant of

[
a− λ b
c d− λ

]
is precisely our definition of the characteristic polynomial.

(A) How might you generalize these ideas to study the eigenvalues and eigenvectors of linear maps
R3 → R3? Rn → Rn?

(B) Can you use eigenvalues and eigenvectors to classify the types of linear maps R2 → R2?
(a) There are 3 ways to classify the eigenvalues of a 2× 2 matrix M :

• The eigenvalues are real and equal.
• The eigenvalues are real, and unequal.
• The eigenvalues are complex conjugates (e.g. of the form a± bi).

(b) For each type above, we can then further subdivide by the number of eigendirections (e.g. the
number of non-parallel eigenvectors):

• No eigenvectors.
• One eigendirection.
• Two eigendirections.
• All vectors are eigenvectors.

Find matrices that correspond to these subdivisions, and sketch and describe their linear transfor-
mations.
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